딥러닝8 SENet SENet 은 기존의 VGGNet, GoogLeNet, ResNet 등에 SE block 을 결합하여 성능 향상을 이끌어 내는 개념이다. 성능 향상을 위해서는 필연적으로 연산량의 증가가 수반되나, SENet 을 사용하는 경우 연산량은 크게 늘지 않으면서도 정확도를 높일 수 있다. 출처 : Squeeze-and-Excitation Networks, Jie Hu, Li Shen, Gang Sun; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 7132-7141 feature X 에 대해 convolution 을 처리한 feature U 를 생성한 뒤, U 에 대해 스퀴즈(squeeze.. 2021. 3. 22. Bottleneck layer CNN 에서 연산의 효율성을 높이기 위해 분석 대상의 크기를 축소하는 것을 pooling 이라고 한다. 이러한 pooling 작업은 feature 의 특징을 추출한 데이터의 사이즈를 줄여 연산량을 줄이고 효율성을 높이기 위한 작업이다. 그러나 분석의 대상이 3차원 데이터라면 해당 feature는 Channel 값을 갖게 된다. Channel 값이 많아지는 경우 연산에 걸리는 속도도 그만큼 증가할 수 밖에 없는데, 이때 Channel 의 차원을 축소하는 개념이 Bottleneck layer 이다. 기본적인 Convolution 파라미터는 아래와 같은 사이즈를 갖는다. Convolution Parameters = Kernel Size x Kernel Size x Input Channel x Output Ch.. 2021. 3. 20. 이전 1 2 다음