ResNet2 LibriSpeech 기반 ResNet, DenseNet, 그리고 앙상블 모델 개발기 서론: 음성 데이터를 활용한 딥러닝 프로젝트 이 프로젝트는 지난 2021년에 진행한 프로젝트이다. 당시 대학원 졸업 논문 주제를 고민하다가 LibriSpeech 데이터셋을 사용하여 음성 데이터를 기반으로 하는 ResNet, DenseNet 모델을 학습시키고, 이를 앙상블하여 성능을 향상하는 프로젝트를 진행하기로 결정했다.이번 포스팅에서는 (매우 늦은 감이 있지만) 당시 프로젝트를 진행하며 겪은 다양한 오류와 해결 과정을 정리하고자 한다. 딥러닝 기반 음성 인식 모델을 구현하는 과정에서 발생하는 문제들을 어떻게 해결했는지 공유하기 위함이다.1. LibriSpeech 데이터셋과 전처리 과정1.1 LibriSpeech 데이터셋LibriSpeech는 읽기 음성 데이터를 포함한 대규모 ASR(Auto Speech.. 2025. 1. 30. Deep residual learning for image recognition 논문 출처 : K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition (2016), pp. 770-778 딥러닝의 성능을 좌우하는 요소는 여러가지가 있다. 특히 통제 가능한 변수들을 하이퍼파라미터라고 하는데, 하이퍼파라미터의 최적값을 찾아가는 것이 딥러닝의 본질이기도 하다. 그러나 이러한 하이퍼파라미터를 조정하는 것 외에도, 신경망의 깊이 또한 딥러닝의 성능과 연관이 있다. 다만 한 가지 중요한 지점은 단순히 신경망의 깊이가 깊어진다고 해서 성능이 개선되지는 않는다는 것이다. 출처 .. 2023. 5. 3. 이전 1 다음